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Abstract—This diploma dissertation presents the research, 

design and development of an Android application for the game 

of quantum tic-tac-toe. Initially we examined the rules that 

govern the game of quantum tic-tac-toe, the relevant algorithms 

for its solution and the capabilities provided by the Android 

development platform. Subsequently we implemented a Java 

library for solving the game, which was later used, with minor 

modifications, for the development of the Android application. 

The said application allows the user to play quantum tic-tac-toe 

games against other users or against the computer, in varying 

levels of difficulty. In addition, the game’s capabilities include 

finding the optimal move in a matter of seconds in every case. 

This feature comes as a result of extensive optimizations in the 

game-solving algorithm, such as alpha-beta pruning and move 

ordering. 

Keywords—quantum tic-tac-toe; android application; minimax 

algorithm; alpha-beta pruning; move ordering 

I. INTRODUCTION 

Quantum tic-tac-toe is a two-player, zero-sum game of 
perfect information that was developed by Allan Goff [1] as a 
teaching metaphor for fundamental concepts of quantum 
mechanics. It is a quantum generalization of the venerable 
game “tic-tac-toe” [2], which adds only one rule: superposition. 

According to Ishizeki and Matsuura [3], the game of 
quantum tic-tac-toe can be solved and it is shown that the first 
player (“X”) has an advantage over the second player (“O”). 
Given perfect play, the first player always wins with a “narrow 
win”. Narrow win is a special case in the game of quantum tic-
tac-toe, in which both players achieve three marks in a row, but 
only the first player to do so wins. 

The objective of this thesis is the development of an 
Android application (“app”) for the game of quantum tic-tac-
toe. The user should be able to play in real-time against the 
“computer” or another user, through a modern, interactive 
interface. Key characteristics of the app should be simplicity, 
responsiveness and ease of use. 

Quantum tic-tac-toe can be played on paper or on a white 
board, but the use of a digital platform allows for increased 
usability. The app disallows invalid moves and provides quick 
navigation to a game’s move history, visual feedback for game 
events, etc. Moreover, it offers an AI (“computer” player) with 

varying levels of difficulty. At the time of writing of this thesis 
(January 2016), no other app or publically available software is 
known to offer similar capabilities. 

Quantum tic-tac-toe has relatively simple rules, which can 
be easily modelled and debugged using the minimax algorithm. 
However, the search space of the game is exponentially bigger 
than in classical tic-tac-toe. Given that the app is meant to be 
used in portable devices with limited hardware, it is obvious 
that the minimax algorithm is in no way enough for our 
purposes. Therefore, the game-solving algorithm should be 
heavily optimized. 

The rest of this thesis is structured as follows. In Section II, 
the theoretical background of the problem at hand is given. In 
Section III, the implementation of the app is discussed. In 
Section IV, the operation of the app is explained, followed by 
improvement suggestions in Section V. Finally, concluding 
remarks are given in Section VI. 

II. THEORETICAL BACKGROUND 

A. Game Rules 

1) Superposition 
As in classical tic-tac-toe, two players (“X” and “O”) take 

turns placing their marks on the game board. However, in 
quantum tic-tac-toe, the players must place a pair of marks per 
turn, in contrast to classical tic-tac-toe, where the players place 
a single mark per turn. These marks are denoted by the player’s 
name (“X” or “O”), subscripted with the number of the move 
during which they were played and must be placed in different 
cells, if possible. Consequently, “X” places the marks X1, X3, 
X5, X7, X9, while “O” places the marks O2, O4, O6, and O8 (see 
Fig. 1). 

  
Fig. 1. Examples of (incomplete) quantum tic-tac-toe games. (Source: [1]) 



These marks are derived from the notion of superposition in 
quantum mechanics and are, therefore, called “quantum” or 
“spooky” marks. Quantum marks are not fixed, i.e. they exist 
in two cells simultaneously, until a special condition is met, 
“cyclic entanglement”, which will be analyzed in the following 
subsections. It follows that each cell may contain multiple 
quantum marks, otherwise by the fifth move, “X” would not be 
able to place both of his marks. 

The superposition rule seems to imply that in reality we are 
playing multiple games of classical tic-tac-toe, simultaneously 
(see Fig. 2). 

 
Fig. 2. The game state in quantum tic-tac-toe is equivalent to multiple games 

of classical tic-tac-toe, which are called the “classical ensemble”. These 

games are in simultaneous play, but they are not independent. (Source: [1]) 

2) Entanglement 
As the game progresses, the players’ moves are inevitably 

intertwined every time a number of them share the same cell. 
In this state, they no longer are independent and, instead, 
influence one another. The game’s term for this state is 
“entanglement”. 

In Fig. 1, we saw two distinct cases of game development. 
In the first game, the moves are independent, i.e. the states are 
separable. However, in the second game, the moves are 
entangled, which leads to contradictory classical games (see 
Fig. 3). Contradictory games are eliminated (pruned) from the 
classical ensemble. 

 
Fig. 3. In the scenario above, if X1 ends up in cell 2, then O2 will end up in 

cell 5. If, however, O2 ends up in cell 2, then X1 will end up in cell 1. (Source: 

[1]) 

Cyclic entanglement is a special case of entanglement, in 
which the participating quantum marks form a circular logic. 
For example, in Fig. 4, if X1 ends up in cell 1, then X3 will end 
up in cell 5, O2 will end up in cell 2 and X1 will end up in cell 

1. Due to the circular nature of the entanglement, we are lead 
back to our initial assumption. 

 
Fig. 4. Example of cyclic entanglement in a game of quantum tic-tac-toe. 
Quantum marks that are part of the cyclic entanglement appear underlined. 

All, but two, of the classical games are contradictory and are, therefore, 

eliminated. The only possible outcomes of the game appear in a square 

outline. (Source: [1]) 

3) Collapse 
In the event of a cyclic entanglement, a “measurement” is 

performed. The game state is “observed”, i.e. the quantum state 
of the game “collapses” into a single reality, where the 
cyclically entangled quantum marks are fixed to cells. No 
matter how complex a cyclic entanglement is, there will always 
be exactly two realities (possible outcomes) to choose from; all 
the other outcomes will be contradictory. In order to balance 
the game strategically, this choice is made by the player who 
did not create the cyclic entanglement. Otherwise, as shown by 
Ishizeki and Matsuura [3], the first player (“X”) holds an unfair 
advantage, because, given perfect play, he always wins. 

Whenever a pair of quantum marks is observed, one of 
them collapses into a “real” or “classical” mark, while the other 
one vanishes. In order to win, a player must have three real 
marks in a row. Cells that contain a real mark prohibit any 
further actions; the mark is fixed in the cell until the end of the 
game. 

Much like a normal move, choosing a reality to collapse 
into is a strategic decision. However, it does not count as a 
normal move, i.e. the player still has to perform a normal move 
after selecting an outcome. Consequently, after a cyclic 
entanglement occurs, the player has two consecutive decisions 
to make. 

4) Special Cases 
A noteworthy aspect of the measurement process in 

quantum tic-tac-toe is that quantum marks collapse in groups, 
thus allowing for simultaneous sets of three marks in a row 
(see Fig. 5). 



  
Fig. 5. Multiple sets of three marks in a row. In the first case, both players 
achieve three marks in a row. In the second case, the first player achieves a 

double win! (Source: [3]) 

The most common case is when both players achieve three 
marks in a row. In this scenario, the winner is the player whose 
largest subscript of the three marks is smaller. In other words, 
if the classical marks were added sequentially, as in classical 
tic-tac-toe, the losing player would have never completed his 
set of three marks, since the game would have already ended 
by then. This outcome of the game is called a narrow win. 

A somewhat rare scenario is when the first player achieves 
two sets of three marks in a row simultaneously; a double win! 
It is worth noting that the second player is not capable of a 
double win, because it requires five different marks. This is yet 
another advantage of the first player, although it is not one of 
great significance, since it requires some very bad moves on 
behalf of the second player in order to happen. 

Last but not least, it is possible that by the ninth move only 
one cell remains open, i.e. the rest of the cells contain real 
marks. In this scenario, the first player places both of his 
quantum marks (X9) in the same cell and they instantly 
collapse into a real mark. 

B. Artificial Intelligence & Game Theory 

1) Games 
In the field of Artificial Intelligence (AI), adversarial search 

problems are often known as games [4]. These problems 
usually come up in multiagent, competitive environments, in 
which the agents’ goals are in conflict. In these environments, 
the actions of one agent influence the problem-solving process 
of other agents, by introducing contingencies. Game theory, on 
the other hand, views any multiagent environment as a game, 
regardless of whether the agents cooperate or compete, 
provided they influence one another significantly. 

One of the most common cases that AI studies, is 
deterministic, two-player, turn-taking, zero-sum games of 
perfect information. In AI terminology, this means that the two 
agents play alternately in a deterministic, fully observable 
environment. In addition, the gain of one agent is equal to the 
loss of the other agent, i.e. the utility values at the end of the 
game are always equal and opposite. A prime example of this 
game category is (quantum) tic-tac-toe. 

2) Optimal Decisions 
At any point of a game, the optimal decision for a player is 

the action that will lead to the best outcome for him, taking into 
consideration every possible response from the opponent(s) 
and assuming perfect play. An optimal strategy is a sequence 

of optimal decisions, thus defining the player’s moves at any 
point of a game. 

The advantage of an optimal strategy is that it maximizes 
the player’s gains against an infallible opponent. In addition, if 
the opponent is not perfect, an optimal strategy will lead to 
even better results. Other strategies may do better against 
suboptimal opponents, but these strategies will necessarily do 
worse against optimal opponents. 

3) Minimax Decision 
Given a game tree, we can assign numeric values to its 

nodes that help us determine an optimal strategy (see Fig. 6). 
These values are called minimax values. The minimax value of 
a node is interpreted as the utility of being in the corresponding 
state for the player MAX, assuming perfect play from both 
players till the end of the game. 

 
Fig. 6. A game tree with minimax values assigned to nodes. In ∆ nodes, it is 

MAX’s turn to move, whilst in ∇ nodes, it is MIN’s turn. MAX prefers moves 

with maximum value, whereas MIN prefers moves with minimum value 

(hence the players’ names). (Source: [4]) 

According to these, we have the following: 

 

The utility function returns a numeric value for a terminal 
state according to the game rules. The successor function 
returns the set of states that result from applying every legal 
move in a state. 

The minimax decision is defined as the action that leads to 
the node with the highest minimax value for player MAX, 
while for player MIN it is defined as the action that leads to the 
node with lowest minimax value. 

4) Minimax Algorithm 
The minimax algorithm (see Fig. 7) computes the minimax 

decision from the current game state by performing a complete 
depth-first exploration of the game tree. The algorithm recurses 
down to the leaves of the tree and then as it unfolds, it copies 
the calculated minimax values to the parent nodes. 

The time complexity of the algorithm is O(bm) and the 
space complexity is O(bm), where “b” is the average branching 
factor and “m” is the maximum depth tree. The time 
complexity renders the algorithm impractical for the vast 
majority of games, yet it is often used for the theoretical 
analysis of games and serves as the basis for more practical 
algorithms. 



 
Fig. 7. The minimax algorithm calculates the minimax decision in the current 

game state for the player that pursues maximisation of utility, assuming the 

opponent aims at minimisation of utility. The algorithm performs a recursive, 
depth-first traversal of the game tree, copying the minimax values as the 

recursion unwinds. (Source: [4]) 

5) Alpha-Beta Pruning 
The astute reader may have noticed that it is possible to 

compute the correct minimax decision without traversing every 
single node in the game tree. By applying pruning techniques 
in the minimax algorithm it is possible to reduce the time 
complexity exponent almost by half, i.e. it is possible to solve a 
game tree roughly twice as deep as minimax in the same 
amount of time. The pruning method examined in this 
subsection is called alpha-beta pruning. 

The general principle of alpha-beta pruning is relatively 
simple. Consider a node “n” somewhere in the game tree (see 
Fig. 8), such that Player has a choice of getting to it. If at any 
decision point further up Player has a better choice (e.g. node 
“m”), then “n” will never be reached in play. Therefore, the 
subtree with the root node “n” may safely be pruned, as soon as 
enough of its descendants have been examined. 

 
Fig. 8. The general case for alpha-beta pruning. An optimal player would 

never reach node “n” in actual play, if node “m” is better. (Source: [4]) 

The alpha-beta algorithm (see Fig. 9) is a variation of the 
minimax algorithm that produces the same result, while 
pruning away the game tree branches that cannot possibly 

influence the final decision. In this manner, large parts of the 
game tree are completely ignored, even entire subtrees of 
considerable size. Although the alpha-beta algorithm is 
surprisingly similar to the minimax algorithm, it is way more 
efficient. 

 
Fig. 9. The alpha-beta algorithm is a variation of the minimax algorithm that 

makes use of alpha-beta pruning. (Source: [4]) 

III. IMPLEMENTATION 

The development process was carried out in two separate 
stages: a backend and a frontend. 

The backend comprises a set of algorithms and structures 
that are necessary for the implementation of a quantum tic-tac-
toe game. The frontend, on the other hand, is a visual wrapper 
around the backend that allows interacting with it through a 
pleasant and user-friendly GUI (Graphical User Interface). 

The backend was implemented in pure Java [5] and was 
later incorporated, with minor modifications, into the Android 
application, since the Android development platform is mostly 
compatible with the Java SE API (Application Programming 
Interface) [6]. The frontend, a native Android app, was built 
using the Android SDK (Software Development Kit) libraries. 

A. Backend 

The backend is, by far, the most challenging and intriguing 
part of this thesis. More specifically, it is the game-solving AI 
that is of interest, because it required numerous optimizations 
in order to accommodate it in a mobile environment. 

A naive minimax implementation for quantum tic-tac-toe 
immediately reveals that the game is much more complex than 
classical tic-tac-toe, due to its exponentially larger search 
space. As a matter of fact, a simple upper bound for the game 
tree size of classical tic-tac-toe is 9!=362880, while the 



corresponding limit for quantum tic-tac-toe is 9!2 or 
approximately 131 billion! In such an implementation, 
traversing the first root subtree (out of 36) takes more than 
three hours on a modern desktop-class computer system. Given 
that the main objective of this thesis is real-time gameplay on 
mobile devices with a responsive interface, it is obvious that 
the game’s algorithm has to be heavily optimized. 

In order to analyze the performance of the core algorithms 
and determine any critical spots, the VisualVM profiling tool 
was put to use (see Fig. 10). VisualVM allows monitoring the 
runtime behavior of Java applications and is included in the 
official JDK (Java Development Kit). 

 
Fig. 10. Screenshot from the VisualVM profiling tool. An analysis of the 

algorithm’s execution on a modern desktop computer is shown, broken down 
in methods. The first three methods consume more than 15% of the total 

execution time each (which is indicated by the qttt.QTTT.main() method) and 

would be prime candidates for optimization. 

1) Alpha-Beta Pruning 
Alpha-beta pruning was the first, most simple and yet most 

important optimization that was applied. After incorporating it 
into the code base, the algorithm was able to traverse the entire 
game tree in approximately 15-20 minutes on a desktop 
computer. The performance is not ideal of course, although the 
performance gains (compared to a “bare” minimax 
implementation) are immense. 

This implementation constitutes the basis on which all the 
other optimizations were applied. Additionally, it is noteworthy 
how such a small optimization (about 10-20 lines of code) led 
to such a disproportionate increase in performance. 

2) Move Ordering 
A naive (and trivial) implementation of the successor 

function in quantum tic-tac-toe would generate the successor 
states in alphabetical order. However, it turns out that changing 
the order in which the game tree nodes are generated, greatly 
affects the performance of the game-solving algorithm. This 
technique is called move ordering and is widely used in 
conjunction with alpha-beta pruning in order to accelerate the 
game tree traversal. 

The principle behind move ordering is that examining the 
best successor state first leads to extensive pruning of the game 
tree by the alpha-beta algorithm. Of course it is not possible to 
choose the best successor state every time, otherwise the move 
ordering function could be used to play perfectly. Instead, the 
move ordering function attempts to reorder the moves 

according to certain criteria that are more likely to prioritize the 
best moves first. 

Ishizeki and Matsuura [3] suggest that the following criteria 
be used: 

 Moves that cause cyclic entanglement 

 Moves that occupy the center cell of the board 

 Moves that occupy a corner of the board 

In addition, the following criterion was checked, although 
without successful results, as expected: 

 Moves that occupy a side cell of the board (i.e. no 
corner) 

The reasoning behind the criteria above is that cyclic 
entanglement causes at least two pairs of quantum marks to 
collapse, thus prohibiting further play in the corresponding 
cells, which, in turn, results in an exponential reduction of the 
search space. Moreover, the center cell and the corners of the 
board are of strategic importance, as in classical tic-tac-toe. On 
the other hand, the side cells of the board are insignificant and, 
in fact, have a negative impact on the algorithm’s performance. 

After thorough testing of all the possible permutations of 
the reordering criteria, they were made use of as listed above. 
In other words, moves that cause cyclic entanglement are 
examined first, followed by moves that occupy the center cell 
of the board and, finally, by moves that occupy a corner of the 
board. 

The observed performance gains of this optimization were 
truly remarkable. Move ordering managed to reduce the total 
execution time of the algorithm from 987 seconds down to 40 
seconds, a 96% reduction of execution time! 

3) Search vs. Lookup 
One last optimization was necessary in order to reduce the 

execution time from 40 seconds on a desktop computer down 
to 5-10 seconds on a mobile device. This performance jump 
was achieved by making use of move lookup instead of move 
search. Put differently, it is preferable to look up the optimal 
move in a precomputed database instead of searching for it in 
the game tree. For instance, there is no need to waste 40 
seconds searching for the optimal move at the beginning of 
every game, since it is already well established by Ishizeki and 
Matsuura [3] that the first player must place his marks in 
opposite corners (i.e. 1-9 or 3-7) in order to secure a narrow 
win against an infallible opponent. 

In an attempt to offer the best possible performance in the 
smallest possible size, the application contains a database of 
precomputed moves for the first five rounds of the game. In 
other words, during the first half of the game, no search is 
performed and, as a result, the optimal moves are retrieved 
almost instantaneously! After the fifth round, the algorithm 
reverts to searching the game tree, but at this point the game 
has progressed deep enough into the game tree so that the 
search cost is negligible. Even in the worst case scenario, 
where no marks have collapsed by the sixth round, the 
algorithm’s execution time is usually less than a couple 



seconds, which guarantees that even the less capable mobile 
devices perform adequately. 

It is worth mentioning that the relevant precomputed files 
consume approximately 90 Megabytes of storage space, but in 
the final installation file they are highly compressed, leading to 
a total package size of only 11 Megabytes. The format of these 
files is very simple so that it is human-readable, but it is also 
quite inefficient with regard to file size, lookup performance, 
etc. A self-explanatory example is shown below. 

 

B. Frontend 

Assuming a fully operating backend, the implementation of 
a frontend is, for the most part, trivial. As a matter of fact, both 
a textual and a graphical interface were implemented, although 
only the latter is accessible to the user in the app. 

The textual interface (see Fig. 11) was created mainly for 
debugging purposes, but as a proof of concept, too. It is 
primitive in a number of ways, yet it allows the user to play 
either against the AI or another user (on the same device). 

 
Fig. 11. A textual representation of the game board. Quantum marks with an 

asterisk have collapsed in the corresponding cells. 

The graphical interface, on the other hand, is much more 
complex (see Fig. 12). It is touch-enabled and uses various 
visual hints (such as colors and effects) in order to present the 
game state in a comprehensible and intuitive manner. This user 
interface will be detailed in the following section. 

It is worth mentioning that the frontend allows multiple 
levels of difficulty for the AI player. This functionality is 
implemented within the frontend and is not available through 
the backend, which only supports perfect play. In order to 

achieve the “illusion” of varying levels of difficulty from a 
perfect opponent, a certain amount of randomness had to be 
introduced. 

 
Fig. 12. A graphical representation of the board during the event of cyclic 
entanglement. The quantum marks X3, O4 and X7 take part in the cyclic 

entanglement and are, therefore, “glowing”. The quantum marks X1 and O2 do 

not participate in the cyclic entanglement and are “faded-out” instead. The 
quantum marks X5 and O6 have already collapsed and consequently occupy 

the whole cell as a visual aid. The user is hinted to choose between the pair of 

underlined quantum marks (X7). 

More specifically: 

 In the “Random Moves” difficulty level, the AI always 
chooses a random move. 

 In the “Easy” difficulty level, the AI chooses a random 
with a 50% probability. 

 In the “Medium” difficulty level, the AI chooses a 
random move with a 25% probability. 

 In the “Hard” difficulty level, the AI chooses a random 
move with a 10% probability. In addition, it always 
chooses the optimal move in the event of a cyclic 
entanglement. 

 In the “Optimal” difficulty level, the AI always chooses 
an optimal move. 

It goes without saying that the AI always chooses a valid 
move, which may turn out to be optimal, even when selected 
randomly. The following table sums up the above. 

TABLE I.  GAME DIFFICULTY LEVELS 

Level 
Random Move 

Probability 

Optimal Move 

Probability 

Random Moves 100% >0% 

Easy 50% >50% 

Medium 25% >75% 

Hard 10% >90% 

Optimal 0% 100% 

IV. OPERATION 

The operation of the app is quite straightforward. Initially, 
the user is greeted with a welcome screen that allows selecting 
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the game mode: either single-player or multiplayer. The single-
player game mode allows setting some options before the game 
begins, that is the user-controlled marks and the difficulty level 
of the AI (see Fig. 13). The multiplayer game mode requires no 
settings, therefore it begins immediately. 

  
Fig. 13. The welcome screen of the app (left) and the game settings for the 

single-player mode (right). 

Depending on the game mode and settings, the user is 
usually greeted with an empty game board (unless the user 
selected the “O” marks in a single-player game). By tapping on 
the cells, the user is able to interact with the game board (see 
Fig. 14). Extra effort was put in so that the interactions are as 
simple and intuitive as possible. 

  
Fig. 14. Empty game board (left) and the third round of a multiplayer game 

(right). 

While using the app, the user may, at any time, navigate to 
a previous screen by making use of the “Up” navigation arrow 

on the left of the toolbar. In addition, during a game the user 
may undo his (own) last move or reset the game board to the 
initial state (see Fig. 15, 16 and 17). 

 
Fig. 15. The application’s toolbar during a single-player game. The “Up” 
navigation arrow can be found on the left, while the “Undo Move” action is 

located on the right. The three vertical dots is the overflow menu which 

contains hidden actions. 

 
Fig. 16. The application’s overflow menu, when activated, presents a list of 

hidden actions (“Reset Board” in this case). 

 
Fig. 17. Toolbar actions are not accessible while the AI is calculating the next 

move. In this case, the actions are temporarily replaced by a spinning circle 

progress bar. 

The game board makes extensive use of various visual aids 
in order to make the game as user-friendly as possible. First of 
all, quantum marks are laid out on an imaginary grid and 
appear in a small font with varying color: the quantum marks 
of “X” are blue, while the quantum marks of “O” are red. 
Collapsed marks appear in black color and expand in order to 
“fill” the entire cell. However, tapping on any of them shrinks 
them back to normal size, in order to reveal the full history of 
moves (see Fig. 18). 

  
Fig. 18. Tapping on any of the collapsed marks toggles the “history” view of 

the game, i.e. all marks are shown, even those that have disappeared. 

In the event of a cyclic entanglement, the quantum marks 
that participate start “glowing”, while the rest appear as 
“ghost” images, using a fade-out effect (see Fig. 12). This 
behavior allows the user to quickly determine which marks are 
going to collapse, while ignoring any symbols that are of no 
immediate interest. 

Finally, when the game ends, a notification pops up on the 
bottom of the screen, informing the user about the game result 
and providing quick access to the “Reset Board” action. Every 



set of three marks in a row is highlighted with the 
corresponding player’s color (see Fig. 19). 

  
Fig. 19. The game has ended. Tapping on any of the collapsed marks toggles 

the “history” view, as usual. 

V. SUGGESTIONS 

Although the application met the requirements that were set 
forth by this thesis, there is always room for improvement. 
What follows is a list of steps that could be taken in the future 
in order to enhance the app. 

A. Move Suggestions 

An idea that would be trivial to implement is move 
suggestions, i.e. some kind of helper function accessible to the 
user that suggests moves, evaluates the current state of the 
game, etc. Given that all the relevant functionality is already 
available in the backend, the only aspect worth contemplating 
would be the game mechanics of such a tool, that is how it is 
presented to the user, which uses should be allowed, what 
consequences (if any) it would incur, etc. 

B. Internet Multiplayer 

An interesting addition to the app would be multiplayer 
matchmaking through the Internet. Implementation-wise this 
suggestion would not require a lot of modifications on the side 
of the client (the app), but it involves coding a server-side 
component, as well as buying, setting up and maintaining 
dedicated servers. Alternatively, in a decentralized, peer-to-
peer architecture, the app could be able to connect directly to 
an IP (Internet Protocol) address, or scan for nearby players on 
the same (local) network. 

C. Multithreading 

A great way to make the game-solving algorithm more 
efficient would be to utilize the multiple processing cores that 
are available in modern mobile devices. After all, it is not 
uncommon for modern smartphones and tablets to have 4, 8 or 
even more CPU (Central Processing Unit) cores. Moreover, the 
minimax algorithm can be easily parallelized, since the 
traversal of every subtree can be performed independently on a 
separate thread. Given that the app’s responsiveness was found 
to be up to par, this suggestion was not implemented, although 
it would, undeniably, lead to major performance gains. 

D. Move Database 

Finally, the current format for the precomputed “opening” 
files is suboptimal in regard to both the file size and lookup 
performance. Although the observed performance is adequate, 
it would be highly advisable that a more efficient 
implementation were used. To this end, an indexing scheme for 
opening moves could be applied, in order to speed up the 
lookup procedure, along with a more compact file format, in 
order to save up on storage space. Alternatively, an SQL 
database system could be used, given that the Android 
development platform includes excellent support for SQLite 
databases by default. 

VI. CONCLUSIONS 

In the previous sections, a theoretical, technical and 
operational analysis of the application was laid out. Taking 
everything into consideration, the end result is considered 
satisfactory, having fulfilled this thesis’ primary objective: a 
simple, user-friendly Android application for the game of 
quantum tic-tac-toe. The application’s interface is deliberately 
minimalistic, yet informative and responsive. Regarding 
functionality, the most common use case scenarios were 
implemented: a single player and a multiplayer mode, along 
with an extra feature that allows setting the difficulty level of 
the AI. 
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