
Development of an Android Application for the Game

of Quantum Tic-Tac-Toe

Konstantinos D. Smanis

Dept. of Electrical & Computer Engineering

University of Patras

Rion, Patras, Greece

konstantinos.smanis@gmail.com

Abstract—This diploma dissertation presents the research,

design and development of an Android application for the game

of quantum tic-tac-toe. Initially we examined the rules that

govern the game of quantum tic-tac-toe, the relevant algorithms

for its solution and the capabilities provided by the Android

development platform. Subsequently we implemented a Java

library for solving the game, which was later used, with minor

modifications, for the development of the Android application.

The said application allows the user to play quantum tic-tac-toe

games against other users or against the computer, in varying

levels of difficulty. In addition, the game’s capabilities include

finding the optimal move in a matter of seconds in every case.

This feature comes as a result of extensive optimizations in the

game-solving algorithm, such as alpha-beta pruning and move

ordering.

Keywords—quantum tic-tac-toe; android application; minimax

algorithm; alpha-beta pruning; move ordering

I. INTRODUCTION

Quantum tic-tac-toe is a two-player, zero-sum game of
perfect information that was developed by Allan Goff [1] as a
teaching metaphor for fundamental concepts of quantum
mechanics. It is a quantum generalization of the venerable
game “tic-tac-toe” [2], which adds only one rule: superposition.

According to Ishizeki and Matsuura [3], the game of
quantum tic-tac-toe can be solved and it is shown that the first
player (“X”) has an advantage over the second player (“O”).
Given perfect play, the first player always wins with a “narrow
win”. Narrow win is a special case in the game of quantum tic-
tac-toe, in which both players achieve three marks in a row, but
only the first player to do so wins.

The objective of this thesis is the development of an
Android application (“app”) for the game of quantum tic-tac-
toe. The user should be able to play in real-time against the
“computer” or another user, through a modern, interactive
interface. Key characteristics of the app should be simplicity,
responsiveness and ease of use.

Quantum tic-tac-toe can be played on paper or on a white
board, but the use of a digital platform allows for increased
usability. The app disallows invalid moves and provides quick
navigation to a game’s move history, visual feedback for game
events, etc. Moreover, it offers an AI (“computer” player) with

varying levels of difficulty. At the time of writing of this thesis
(January 2016), no other app or publically available software is
known to offer similar capabilities.

Quantum tic-tac-toe has relatively simple rules, which can
be easily modelled and debugged using the minimax algorithm.
However, the search space of the game is exponentially bigger
than in classical tic-tac-toe. Given that the app is meant to be
used in portable devices with limited hardware, it is obvious
that the minimax algorithm is in no way enough for our
purposes. Therefore, the game-solving algorithm should be
heavily optimized.

The rest of this thesis is structured as follows. In Section II,
the theoretical background of the problem at hand is given. In
Section III, the implementation of the app is discussed. In
Section IV, the operation of the app is explained, followed by
improvement suggestions in Section V. Finally, concluding
remarks are given in Section VI.

II. THEORETICAL BACKGROUND

A. Game Rules

1) Superposition
As in classical tic-tac-toe, two players (“X” and “O”) take

turns placing their marks on the game board. However, in
quantum tic-tac-toe, the players must place a pair of marks per
turn, in contrast to classical tic-tac-toe, where the players place
a single mark per turn. These marks are denoted by the player’s
name (“X” or “O”), subscripted with the number of the move
during which they were played and must be placed in different
cells, if possible. Consequently, “X” places the marks X1, X3,
X5, X7, X9, while “O” places the marks O2, O4, O6, and O8 (see
Fig. 1).

Fig. 1. Examples of (incomplete) quantum tic-tac-toe games. (Source: [1])

These marks are derived from the notion of superposition in
quantum mechanics and are, therefore, called “quantum” or
“spooky” marks. Quantum marks are not fixed, i.e. they exist
in two cells simultaneously, until a special condition is met,
“cyclic entanglement”, which will be analyzed in the following
subsections. It follows that each cell may contain multiple
quantum marks, otherwise by the fifth move, “X” would not be
able to place both of his marks.

The superposition rule seems to imply that in reality we are
playing multiple games of classical tic-tac-toe, simultaneously
(see Fig. 2).

Fig. 2. The game state in quantum tic-tac-toe is equivalent to multiple games

of classical tic-tac-toe, which are called the “classical ensemble”. These

games are in simultaneous play, but they are not independent. (Source: [1])

2) Entanglement
As the game progresses, the players’ moves are inevitably

intertwined every time a number of them share the same cell.
In this state, they no longer are independent and, instead,
influence one another. The game’s term for this state is
“entanglement”.

In Fig. 1, we saw two distinct cases of game development.
In the first game, the moves are independent, i.e. the states are
separable. However, in the second game, the moves are
entangled, which leads to contradictory classical games (see
Fig. 3). Contradictory games are eliminated (pruned) from the
classical ensemble.

Fig. 3. In the scenario above, if X1 ends up in cell 2, then O2 will end up in

cell 5. If, however, O2 ends up in cell 2, then X1 will end up in cell 1. (Source:

[1])

Cyclic entanglement is a special case of entanglement, in
which the participating quantum marks form a circular logic.
For example, in Fig. 4, if X1 ends up in cell 1, then X3 will end
up in cell 5, O2 will end up in cell 2 and X1 will end up in cell

1. Due to the circular nature of the entanglement, we are lead
back to our initial assumption.

Fig. 4. Example of cyclic entanglement in a game of quantum tic-tac-toe.
Quantum marks that are part of the cyclic entanglement appear underlined.

All, but two, of the classical games are contradictory and are, therefore,

eliminated. The only possible outcomes of the game appear in a square

outline. (Source: [1])

3) Collapse
In the event of a cyclic entanglement, a “measurement” is

performed. The game state is “observed”, i.e. the quantum state
of the game “collapses” into a single reality, where the
cyclically entangled quantum marks are fixed to cells. No
matter how complex a cyclic entanglement is, there will always
be exactly two realities (possible outcomes) to choose from; all
the other outcomes will be contradictory. In order to balance
the game strategically, this choice is made by the player who
did not create the cyclic entanglement. Otherwise, as shown by
Ishizeki and Matsuura [3], the first player (“X”) holds an unfair
advantage, because, given perfect play, he always wins.

Whenever a pair of quantum marks is observed, one of
them collapses into a “real” or “classical” mark, while the other
one vanishes. In order to win, a player must have three real
marks in a row. Cells that contain a real mark prohibit any
further actions; the mark is fixed in the cell until the end of the
game.

Much like a normal move, choosing a reality to collapse
into is a strategic decision. However, it does not count as a
normal move, i.e. the player still has to perform a normal move
after selecting an outcome. Consequently, after a cyclic
entanglement occurs, the player has two consecutive decisions
to make.

4) Special Cases
A noteworthy aspect of the measurement process in

quantum tic-tac-toe is that quantum marks collapse in groups,
thus allowing for simultaneous sets of three marks in a row
(see Fig. 5).

Fig. 5. Multiple sets of three marks in a row. In the first case, both players
achieve three marks in a row. In the second case, the first player achieves a

double win! (Source: [3])

The most common case is when both players achieve three
marks in a row. In this scenario, the winner is the player whose
largest subscript of the three marks is smaller. In other words,
if the classical marks were added sequentially, as in classical
tic-tac-toe, the losing player would have never completed his
set of three marks, since the game would have already ended
by then. This outcome of the game is called a narrow win.

A somewhat rare scenario is when the first player achieves
two sets of three marks in a row simultaneously; a double win!
It is worth noting that the second player is not capable of a
double win, because it requires five different marks. This is yet
another advantage of the first player, although it is not one of
great significance, since it requires some very bad moves on
behalf of the second player in order to happen.

Last but not least, it is possible that by the ninth move only
one cell remains open, i.e. the rest of the cells contain real
marks. In this scenario, the first player places both of his
quantum marks (X9) in the same cell and they instantly
collapse into a real mark.

B. Artificial Intelligence & Game Theory

1) Games
In the field of Artificial Intelligence (AI), adversarial search

problems are often known as games [4]. These problems
usually come up in multiagent, competitive environments, in
which the agents’ goals are in conflict. In these environments,
the actions of one agent influence the problem-solving process
of other agents, by introducing contingencies. Game theory, on
the other hand, views any multiagent environment as a game,
regardless of whether the agents cooperate or compete,
provided they influence one another significantly.

One of the most common cases that AI studies, is
deterministic, two-player, turn-taking, zero-sum games of
perfect information. In AI terminology, this means that the two
agents play alternately in a deterministic, fully observable
environment. In addition, the gain of one agent is equal to the
loss of the other agent, i.e. the utility values at the end of the
game are always equal and opposite. A prime example of this
game category is (quantum) tic-tac-toe.

2) Optimal Decisions
At any point of a game, the optimal decision for a player is

the action that will lead to the best outcome for him, taking into
consideration every possible response from the opponent(s)
and assuming perfect play. An optimal strategy is a sequence

of optimal decisions, thus defining the player’s moves at any
point of a game.

The advantage of an optimal strategy is that it maximizes
the player’s gains against an infallible opponent. In addition, if
the opponent is not perfect, an optimal strategy will lead to
even better results. Other strategies may do better against
suboptimal opponents, but these strategies will necessarily do
worse against optimal opponents.

3) Minimax Decision
Given a game tree, we can assign numeric values to its

nodes that help us determine an optimal strategy (see Fig. 6).
These values are called minimax values. The minimax value of
a node is interpreted as the utility of being in the corresponding
state for the player MAX, assuming perfect play from both
players till the end of the game.

Fig. 6. A game tree with minimax values assigned to nodes. In ∆ nodes, it is

MAX’s turn to move, whilst in ∇ nodes, it is MIN’s turn. MAX prefers moves

with maximum value, whereas MIN prefers moves with minimum value

(hence the players’ names). (Source: [4])

According to these, we have the following:

The utility function returns a numeric value for a terminal
state according to the game rules. The successor function
returns the set of states that result from applying every legal
move in a state.

The minimax decision is defined as the action that leads to
the node with the highest minimax value for player MAX,
while for player MIN it is defined as the action that leads to the
node with lowest minimax value.

4) Minimax Algorithm
The minimax algorithm (see Fig. 7) computes the minimax

decision from the current game state by performing a complete
depth-first exploration of the game tree. The algorithm recurses
down to the leaves of the tree and then as it unfolds, it copies
the calculated minimax values to the parent nodes.

The time complexity of the algorithm is O(bm) and the
space complexity is O(bm), where “b” is the average branching
factor and “m” is the maximum depth tree. The time
complexity renders the algorithm impractical for the vast
majority of games, yet it is often used for the theoretical
analysis of games and serves as the basis for more practical
algorithms.

Fig. 7. The minimax algorithm calculates the minimax decision in the current

game state for the player that pursues maximisation of utility, assuming the

opponent aims at minimisation of utility. The algorithm performs a recursive,
depth-first traversal of the game tree, copying the minimax values as the

recursion unwinds. (Source: [4])

5) Alpha-Beta Pruning
The astute reader may have noticed that it is possible to

compute the correct minimax decision without traversing every
single node in the game tree. By applying pruning techniques
in the minimax algorithm it is possible to reduce the time
complexity exponent almost by half, i.e. it is possible to solve a
game tree roughly twice as deep as minimax in the same
amount of time. The pruning method examined in this
subsection is called alpha-beta pruning.

The general principle of alpha-beta pruning is relatively
simple. Consider a node “n” somewhere in the game tree (see
Fig. 8), such that Player has a choice of getting to it. If at any
decision point further up Player has a better choice (e.g. node
“m”), then “n” will never be reached in play. Therefore, the
subtree with the root node “n” may safely be pruned, as soon as
enough of its descendants have been examined.

Fig. 8. The general case for alpha-beta pruning. An optimal player would

never reach node “n” in actual play, if node “m” is better. (Source: [4])

The alpha-beta algorithm (see Fig. 9) is a variation of the
minimax algorithm that produces the same result, while
pruning away the game tree branches that cannot possibly

influence the final decision. In this manner, large parts of the
game tree are completely ignored, even entire subtrees of
considerable size. Although the alpha-beta algorithm is
surprisingly similar to the minimax algorithm, it is way more
efficient.

Fig. 9. The alpha-beta algorithm is a variation of the minimax algorithm that

makes use of alpha-beta pruning. (Source: [4])

III. IMPLEMENTATION

The development process was carried out in two separate
stages: a backend and a frontend.

The backend comprises a set of algorithms and structures
that are necessary for the implementation of a quantum tic-tac-
toe game. The frontend, on the other hand, is a visual wrapper
around the backend that allows interacting with it through a
pleasant and user-friendly GUI (Graphical User Interface).

The backend was implemented in pure Java [5] and was
later incorporated, with minor modifications, into the Android
application, since the Android development platform is mostly
compatible with the Java SE API (Application Programming
Interface) [6]. The frontend, a native Android app, was built
using the Android SDK (Software Development Kit) libraries.

A. Backend

The backend is, by far, the most challenging and intriguing
part of this thesis. More specifically, it is the game-solving AI
that is of interest, because it required numerous optimizations
in order to accommodate it in a mobile environment.

A naive minimax implementation for quantum tic-tac-toe
immediately reveals that the game is much more complex than
classical tic-tac-toe, due to its exponentially larger search
space. As a matter of fact, a simple upper bound for the game
tree size of classical tic-tac-toe is 9!=362880, while the

corresponding limit for quantum tic-tac-toe is 9!2 or
approximately 131 billion! In such an implementation,
traversing the first root subtree (out of 36) takes more than
three hours on a modern desktop-class computer system. Given
that the main objective of this thesis is real-time gameplay on
mobile devices with a responsive interface, it is obvious that
the game’s algorithm has to be heavily optimized.

In order to analyze the performance of the core algorithms
and determine any critical spots, the VisualVM profiling tool
was put to use (see Fig. 10). VisualVM allows monitoring the
runtime behavior of Java applications and is included in the
official JDK (Java Development Kit).

Fig. 10. Screenshot from the VisualVM profiling tool. An analysis of the

algorithm’s execution on a modern desktop computer is shown, broken down
in methods. The first three methods consume more than 15% of the total

execution time each (which is indicated by the qttt.QTTT.main() method) and

would be prime candidates for optimization.

1) Alpha-Beta Pruning
Alpha-beta pruning was the first, most simple and yet most

important optimization that was applied. After incorporating it
into the code base, the algorithm was able to traverse the entire
game tree in approximately 15-20 minutes on a desktop
computer. The performance is not ideal of course, although the
performance gains (compared to a “bare” minimax
implementation) are immense.

This implementation constitutes the basis on which all the
other optimizations were applied. Additionally, it is noteworthy
how such a small optimization (about 10-20 lines of code) led
to such a disproportionate increase in performance.

2) Move Ordering
A naive (and trivial) implementation of the successor

function in quantum tic-tac-toe would generate the successor
states in alphabetical order. However, it turns out that changing
the order in which the game tree nodes are generated, greatly
affects the performance of the game-solving algorithm. This
technique is called move ordering and is widely used in
conjunction with alpha-beta pruning in order to accelerate the
game tree traversal.

The principle behind move ordering is that examining the
best successor state first leads to extensive pruning of the game
tree by the alpha-beta algorithm. Of course it is not possible to
choose the best successor state every time, otherwise the move
ordering function could be used to play perfectly. Instead, the
move ordering function attempts to reorder the moves

according to certain criteria that are more likely to prioritize the
best moves first.

Ishizeki and Matsuura [3] suggest that the following criteria
be used:

 Moves that cause cyclic entanglement

 Moves that occupy the center cell of the board

 Moves that occupy a corner of the board

In addition, the following criterion was checked, although
without successful results, as expected:

 Moves that occupy a side cell of the board (i.e. no
corner)

The reasoning behind the criteria above is that cyclic
entanglement causes at least two pairs of quantum marks to
collapse, thus prohibiting further play in the corresponding
cells, which, in turn, results in an exponential reduction of the
search space. Moreover, the center cell and the corners of the
board are of strategic importance, as in classical tic-tac-toe. On
the other hand, the side cells of the board are insignificant and,
in fact, have a negative impact on the algorithm’s performance.

After thorough testing of all the possible permutations of
the reordering criteria, they were made use of as listed above.
In other words, moves that cause cyclic entanglement are
examined first, followed by moves that occupy the center cell
of the board and, finally, by moves that occupy a corner of the
board.

The observed performance gains of this optimization were
truly remarkable. Move ordering managed to reduce the total
execution time of the algorithm from 987 seconds down to 40
seconds, a 96% reduction of execution time!

3) Search vs. Lookup
One last optimization was necessary in order to reduce the

execution time from 40 seconds on a desktop computer down
to 5-10 seconds on a mobile device. This performance jump
was achieved by making use of move lookup instead of move
search. Put differently, it is preferable to look up the optimal
move in a precomputed database instead of searching for it in
the game tree. For instance, there is no need to waste 40
seconds searching for the optimal move at the beginning of
every game, since it is already well established by Ishizeki and
Matsuura [3] that the first player must place his marks in
opposite corners (i.e. 1-9 or 3-7) in order to secure a narrow
win against an infallible opponent.

In an attempt to offer the best possible performance in the
smallest possible size, the application contains a database of
precomputed moves for the first five rounds of the game. In
other words, during the first half of the game, no search is
performed and, as a result, the optimal moves are retrieved
almost instantaneously! After the fifth round, the algorithm
reverts to searching the game tree, but at this point the game
has progressed deep enough into the game tree so that the
search cost is negligible. Even in the worst case scenario,
where no marks have collapsed by the sixth round, the
algorithm’s execution time is usually less than a couple

seconds, which guarantees that even the less capable mobile
devices perform adequately.

It is worth mentioning that the relevant precomputed files
consume approximately 90 Megabytes of storage space, but in
the final installation file they are highly compressed, leading to
a total package size of only 11 Megabytes. The format of these
files is very simple so that it is human-readable, but it is also
quite inefficient with regard to file size, lookup performance,
etc. A self-explanatory example is shown below.

B. Frontend

Assuming a fully operating backend, the implementation of
a frontend is, for the most part, trivial. As a matter of fact, both
a textual and a graphical interface were implemented, although
only the latter is accessible to the user in the app.

The textual interface (see Fig. 11) was created mainly for
debugging purposes, but as a proof of concept, too. It is
primitive in a number of ways, yet it allows the user to play
either against the AI or another user (on the same device).

Fig. 11. A textual representation of the game board. Quantum marks with an

asterisk have collapsed in the corresponding cells.

The graphical interface, on the other hand, is much more
complex (see Fig. 12). It is touch-enabled and uses various
visual hints (such as colors and effects) in order to present the
game state in a comprehensible and intuitive manner. This user
interface will be detailed in the following section.

It is worth mentioning that the frontend allows multiple
levels of difficulty for the AI player. This functionality is
implemented within the frontend and is not available through
the backend, which only supports perfect play. In order to

achieve the “illusion” of varying levels of difficulty from a
perfect opponent, a certain amount of randomness had to be
introduced.

Fig. 12. A graphical representation of the board during the event of cyclic
entanglement. The quantum marks X3, O4 and X7 take part in the cyclic

entanglement and are, therefore, “glowing”. The quantum marks X1 and O2 do

not participate in the cyclic entanglement and are “faded-out” instead. The
quantum marks X5 and O6 have already collapsed and consequently occupy

the whole cell as a visual aid. The user is hinted to choose between the pair of

underlined quantum marks (X7).

More specifically:

 In the “Random Moves” difficulty level, the AI always
chooses a random move.

 In the “Easy” difficulty level, the AI chooses a random
with a 50% probability.

 In the “Medium” difficulty level, the AI chooses a
random move with a 25% probability.

 In the “Hard” difficulty level, the AI chooses a random
move with a 10% probability. In addition, it always
chooses the optimal move in the event of a cyclic
entanglement.

 In the “Optimal” difficulty level, the AI always chooses
an optimal move.

It goes without saying that the AI always chooses a valid
move, which may turn out to be optimal, even when selected
randomly. The following table sums up the above.

TABLE I. GAME DIFFICULTY LEVELS

Level
Random Move

Probability

Optimal Move

Probability

Random Moves 100% >0%

Easy 50% >50%

Medium 25% >75%

Hard 10% >90%

Optimal 0% 100%

IV. OPERATION

The operation of the app is quite straightforward. Initially,
the user is greeted with a welcome screen that allows selecting

(0,1)(0,1)(1)(7,8):0,13

4,7

4,8

6,7

6,8

(0,1)(0,2)(0,1):-2,13

0

1

the game mode: either single-player or multiplayer. The single-
player game mode allows setting some options before the game
begins, that is the user-controlled marks and the difficulty level
of the AI (see Fig. 13). The multiplayer game mode requires no
settings, therefore it begins immediately.

Fig. 13. The welcome screen of the app (left) and the game settings for the

single-player mode (right).

Depending on the game mode and settings, the user is
usually greeted with an empty game board (unless the user
selected the “O” marks in a single-player game). By tapping on
the cells, the user is able to interact with the game board (see
Fig. 14). Extra effort was put in so that the interactions are as
simple and intuitive as possible.

Fig. 14. Empty game board (left) and the third round of a multiplayer game

(right).

While using the app, the user may, at any time, navigate to
a previous screen by making use of the “Up” navigation arrow

on the left of the toolbar. In addition, during a game the user
may undo his (own) last move or reset the game board to the
initial state (see Fig. 15, 16 and 17).

Fig. 15. The application’s toolbar during a single-player game. The “Up”
navigation arrow can be found on the left, while the “Undo Move” action is

located on the right. The three vertical dots is the overflow menu which

contains hidden actions.

Fig. 16. The application’s overflow menu, when activated, presents a list of

hidden actions (“Reset Board” in this case).

Fig. 17. Toolbar actions are not accessible while the AI is calculating the next

move. In this case, the actions are temporarily replaced by a spinning circle

progress bar.

The game board makes extensive use of various visual aids
in order to make the game as user-friendly as possible. First of
all, quantum marks are laid out on an imaginary grid and
appear in a small font with varying color: the quantum marks
of “X” are blue, while the quantum marks of “O” are red.
Collapsed marks appear in black color and expand in order to
“fill” the entire cell. However, tapping on any of them shrinks
them back to normal size, in order to reveal the full history of
moves (see Fig. 18).

Fig. 18. Tapping on any of the collapsed marks toggles the “history” view of

the game, i.e. all marks are shown, even those that have disappeared.

In the event of a cyclic entanglement, the quantum marks
that participate start “glowing”, while the rest appear as
“ghost” images, using a fade-out effect (see Fig. 12). This
behavior allows the user to quickly determine which marks are
going to collapse, while ignoring any symbols that are of no
immediate interest.

Finally, when the game ends, a notification pops up on the
bottom of the screen, informing the user about the game result
and providing quick access to the “Reset Board” action. Every

set of three marks in a row is highlighted with the
corresponding player’s color (see Fig. 19).

Fig. 19. The game has ended. Tapping on any of the collapsed marks toggles

the “history” view, as usual.

V. SUGGESTIONS

Although the application met the requirements that were set
forth by this thesis, there is always room for improvement.
What follows is a list of steps that could be taken in the future
in order to enhance the app.

A. Move Suggestions

An idea that would be trivial to implement is move
suggestions, i.e. some kind of helper function accessible to the
user that suggests moves, evaluates the current state of the
game, etc. Given that all the relevant functionality is already
available in the backend, the only aspect worth contemplating
would be the game mechanics of such a tool, that is how it is
presented to the user, which uses should be allowed, what
consequences (if any) it would incur, etc.

B. Internet Multiplayer

An interesting addition to the app would be multiplayer
matchmaking through the Internet. Implementation-wise this
suggestion would not require a lot of modifications on the side
of the client (the app), but it involves coding a server-side
component, as well as buying, setting up and maintaining
dedicated servers. Alternatively, in a decentralized, peer-to-
peer architecture, the app could be able to connect directly to
an IP (Internet Protocol) address, or scan for nearby players on
the same (local) network.

C. Multithreading

A great way to make the game-solving algorithm more
efficient would be to utilize the multiple processing cores that
are available in modern mobile devices. After all, it is not
uncommon for modern smartphones and tablets to have 4, 8 or
even more CPU (Central Processing Unit) cores. Moreover, the
minimax algorithm can be easily parallelized, since the
traversal of every subtree can be performed independently on a
separate thread. Given that the app’s responsiveness was found
to be up to par, this suggestion was not implemented, although
it would, undeniably, lead to major performance gains.

D. Move Database

Finally, the current format for the precomputed “opening”
files is suboptimal in regard to both the file size and lookup
performance. Although the observed performance is adequate,
it would be highly advisable that a more efficient
implementation were used. To this end, an indexing scheme for
opening moves could be applied, in order to speed up the
lookup procedure, along with a more compact file format, in
order to save up on storage space. Alternatively, an SQL
database system could be used, given that the Android
development platform includes excellent support for SQLite
databases by default.

VI. CONCLUSIONS

In the previous sections, a theoretical, technical and
operational analysis of the application was laid out. Taking
everything into consideration, the end result is considered
satisfactory, having fulfilled this thesis’ primary objective: a
simple, user-friendly Android application for the game of
quantum tic-tac-toe. The application’s interface is deliberately
minimalistic, yet informative and responsive. Regarding
functionality, the most common use case scenarios were
implemented: a single player and a multiplayer mode, along
with an extra feature that allows setting the difficulty level of
the AI.

REFERENCES

[1] A. Goff, “Quantum tic-tac-toe: A teaching metaphor for superposition in
quantum mechanics,” American Journal of Physics, vol. 74, no. 11, pp.
962–973, 2006.

[2] “Quantum tic-tac-toe,” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Quantum_tic-tac-toe. [Accessed: Jan-
2016].

[3] T. Ishizeki and A. Matsuura, “Solving Quantum Tic-Tac-Toe,” in
Proceedings of the International Conference on Advanced Computing &
Communication Technologies, 2011, pp. 330–334.

[4] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ: Prentice Hall, 2009.

[5] “Java (programming language),” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Java_(programming_language). [Accessed:
Jan-2016].

[6] “Android (operating system),” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Android_(operating_system). [Accessed:
Jan-2016].

